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1. ABSTRACT  

Faults are an essential component of geothermal systems, particularly in the Great Basin region where most hydrothermal systems are 

fault-controlled. Accurate and complete fault mapping is therefore of prime importance for assessing the geothermal favorability of an 

area or a prospect, as it allows for defining the structural network, its orientation with respect to the stress field and the potential favorable 

structural settings (step-over, accommodation zone, etc). Quaternary faults databases exist across the western USA. However, their 

accuracy and the homogeneity of mapping between the sub-regions/states is sometimes insufficient for an objective analysis of favorability 

at a regional scale. This could create a bias between regions where fault mapping is robust and those where it is incomplete. To overcome 

this bias, TLS Geothermics has developed a deep learning approach using convolution neural networks for geological fault detection 

based on remote sensing images. By selecting the appropriate data, the neural network can produce fault prediction maps at regional scale. 

It can therefore be used to better assess geothermal potential at a regional scale. Using an adapted version of the neural network on a local 

scale and with higher resolution remote sensing data can also provide more robust structural models on a prospect scale.  

2. INTRODUCTION 

 

Figure 1: Map of the study area in the northern central Nevada showing the LIDAR data coverage and the extent of the training 

area with the associated fault label. USGS Quaternary faults are also shown as black lines. Location of zoom area in Figure 8 and 

Figure 9 are shown on the prediction area as white rectangles. 

Faults and fractures are widespread in the Earth’s crust. They are a key parameter for many geosciences topics including resource 

exploration (hydrocarbons, minerals, geothermal) and geological hazards (earthquakes, induced seismicity or landslides). Faults can span 

a wide range of length scales (10−6 - 103 km) and surface to depth widths (1 – 100 km) and have a complex 3D and internal architecture 
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(Caine et al., 1996; Curewitz and Karson, 1997; Wesnousky, 1988). At all scales, the fault network is composed of major faults of 

potentially complex geometry and a set of secondary fractures and faults (the damage zone) that more or less intensely dissect the host 

rock around the main fault, sometimes to great distances from it (Chester and Logan, 1986; Faulkner et al., 2011; Mitchell and Faulkner, 

2009). 

This fault network is of prime importance for geothermal systems because it has a strong influence on the permeability (Bense et al., 2013; 

Caine et al., 1996; Evans et al., 1997). Indeed, most of the geothermal systems in the Western North America have fault-controlled 

permeability (Barton et al., 1997; Faulds et al., 2010; Jolie et al., 2015). However, faults can also act as barriers to fluid flow and 

compartmentalize geothermal systems (Caine et al., 1996; Kaven et al., 2011). The behavior of fault permeability depends on several 

parameters including: the deformed lithologies (Bense et al., 2013), the density and aperture of the fractures and faults (Baghbanan and 

Jing, 2008; J. E. Gale, 1982; Gao et al., 2020), potential scaling and alteration (Bense et al., 2013; Detwiler and Morris, 2018) and the 

orientation of the faults relative to the local stress field (Baghbanan and Jing, 2008; Barton et al., 1995; Detwiler and Morris, 2018; John 

E. Gale, 1982). The geometry of the major fault segments can thus have an influence on these parameters and forms specific structural 

settings (Curewitz and Karson, 1997; Faulds and Hinz, 2015), which imply fracture network complexity and a variation in the local stress 

and strain fields that favour permeability and fluid circulation (Siler, 2023; Siler et al., 2018, 2016). Therefore, accurate and reliable fault 

mapping is essential at all stages of geothermal system exploration. It is even more important in the prospecting and early exploration 

phases, when no geophysical or drilling data are available. 

Western North America contains a diffuse plate boundary, characterized by dextral motion between the Pacific and North American plates 

(Atwater and Stock, 1998) and west-northwest-directed extension within the Basin and Range Province (Jones et al., 1992). The San 

Andreas fault system accommodates ~80% of the plate motion while the remaining ~20% is accommodated by the right-lateral strike-slip 

fault system of the Walker Lane (Faulds et al., 2005; Hammond and Thatcher, 2007; Kreemer et al., 2009). A broad zone of active WNW-

directed extension stretches eastward across the Great Basin region to absorb north-westward declining dextral motion in the Walker 

Lane. Given this tectonic activity, Western North America and especially the Basin and Range Province in extensive motion, are 

particularly well suited to mapping surface faults. Many faults induce local topographic variations (fault scarp) that can be mapped from 

elevation, slope or satellite imagery data (Johnson et al., 2014; MacKnight et al., 2004). 

 

Figure 2: (Left) USGS Quaternary fault density map highlighting the regional variation in Quaternary fault mapping that is not 

only due to the geological context: northern Nevada compared to southern Idaho and Oregon, some local high density in Arizona 

compared to state scale mapping; (Right) Local discrepancy observed in North Central Nevada: distance between USGS 

Quaternary faults and TLS fault label can be up to 400m. 

Databases of these most recent faults exist, especially the USGS Quaternary Fault Database. However, the mapping is occasionally 

imprecise at small scale or of variable and heterogeneous accuracy at large scale (Figure 1). The local imprecision may be due to the 

resolution of the available data for mapping at the time the database was created. The heterogeneity of fault mapping may be due to the 

aggregation of different mapping sources or scales in this database. Indeed, some areas where the geology has been mapped more precisely 

have an artificially higher fault density and accuracy than areas where geological and structural mapping has been done at a larger scale. 

Improvements in the available digital elevation models and satellite imagery (coverage and resolution) now make it possible to map 
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Quaternary faults more accurately and consistently. However, this work is very time consuming when carried out by a human operator 

and can lead to biased mapping. 

To address this challenge, we propose to harness the power of artificial intelligence (AI) and, in particular, convolutional neural networks 

(CNN) (LeCun et al., 2015). CNN has revolutionized numerous applications in computer vision, natural language processing, and 

behavioral analysis (Sturman et al., 2020; Voulodimos et al., 2018). Among the various algorithms, CNNs have shown great potential for 

tackling the complex task of image data analysis and the ability to rapidly process large amounts of data (Krizhevsky et al., 2012; 

Russakovsky et al., 2015; Simonyan and Zisserman, 2015). In the geosciences, the CNNs have already shown powerful results for feature 

detection on images or in 3D physical models with applications including seismic inversion (Das et al., 2019) or interpretation (Waldeland 

et al., 2018; Wrona et al., 2021; Xiong et al., 2018) and feature detection on remote images (Ding et al., 2016; Mattéo et al., 2021; Palafox 

et al., 2017). In our study, CNNs are trained with image data (composed of elevation, slope and satellite data) and labels (“ground truth” 

faults mapped by a human operator on a small-scale area where the Quaternary fault signature is clear). As a small number of training 

data could lead to low performance, a data augmentation step is performed to greatly increase the number of training data. The training 

hyperparameters are currently chosen arbitrarily, but are being optimized in a dedicated work to obtain the best prediction performance 

on a set of test images (not used for training). The trained model is then able to predict faults over a much larger area, allowing exploration 

geologists to map the complexity of the fault network more accurately. 

3. DATA AND LABELS 

 

Figure 3: Example of a data image (128 x 128 x 3) including elevation, slope and Sentinel-2 B8A bands, and the associated fault 

label mapped by human operators.  

3.1. Digital Elevation Model (DEM) 

The elevation maps are provided through the 3D Elevation Program (3DEP), an initiative led by the USGS to collect and make available 

high-quality elevation data for the whole US territory (USGS 3D Elevation Program). The elevation dataset is derived from various source 

datasets that are processed to a specification with a consistent resolution, coordinate system, elevation units, and horizontal and vertical 

datums. For this study, we chose to use the 1/3 arc-second elevation data, at raster format, because it is the highest resolution seamless 

DEM dataset for the US with full coverage of the 48 conterminous states, Alaska, Hawaii, and US territories. The ground spacing is 

approximately 10 m North/South, but varies East/West due to meridian convergence with latitude. This resolution was also chosen because 

(1) it allows an operator to see most of the fault scarps to define the fault labels and qualitatively assess prediction performance, (2) it 

requires less computational space than a 1 m-resolution DEM. 

The slope raster, representing the inclination of a surface, is calculated from the elevation data. However, the quality of the slope 

calculation is significantly degraded by strong artefacts in some specific areas. After analysis, these areas correspond to areas where no 

LIDAR (Laser Imaging Detection And Ranging) data are available. This means that clean slope raster data can only be calculated where 

elevation data is derived from LIDAR data. Therefore, we chose to use the 1/3 arc-second elevation data, but only where it is derived 

from LIDAR data, in the northern central Nevada (USGS 3D Elevation Program). 

3.2. Satellite imagery 

To add independent data from elevation and slope, satellite images are also considered for training deep learning neural network. Among 

the available satellite imagery, the choice has been made to use images from Sentinel-2, an Earth observation mission launched by the 

European Space Agency (ESA) as part of the Copernicus program (https://www.copernicus.eu/fr). The mission comprises a constellation 

of satellites, with the two first (Sentinel-2A and Sentinel-2B) launched in 2015 and 2017 respectively. Sentinel-2 satellites acquire data 

over 13 spectral bands—four bands (blue, green, red, near infra-red—NIR) at 10 m resolution and six other bands (including shortwave 

infra-red—SWIR) at 20 m resolution. Therefore, these resolutions are consistent with the 10 m-resolution of elevation and slope data. 

The satellite has a repetition frequency, i.e. the frequency at which the satellite passes over the same over the same area, 5 to 10 days 

depending on the area. Due to the large size of the dataset, Sentinel-2 products are distributed as tiles of 1 x 1 degree. In addition, the 

satellite images selected must be as clean as possible, avoiding artefacts like clouds, smoke from wildfire, shadows from the sun’s angle 
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on topography, and snow. Therefore, we have used Sentinel-2 data processed at level 2A by CNES images from Sentinel-A and we have 

carefully selected tiles from those available in the early afternoon, during summer to fall, and without clouds.  

Among the available spectral bands, we chose only the B8A band to avoid making the training images too heavy and to keep the study 

within the available computing capacity. The B8A band, with a resolution of 20 m down-sampled to 10 m, is a visible and near-infrared 

centered in 865 nm wavelength with a bandwidth of 20 nm. It was chosen after testing all the bands and an analysis of the spectral signature 

of the fault pixel across all the spectral bands of Sentinel-2 which are not detailed in this publication. Note that the B8A band is likely to 

be suitable due to its ability to detect biomass content and to analyse or classify vegetation. This may be important in some areas of very 

flat topography where faults are not necessarily highlighted by elevation data but sometimes by vegetation orientation. 

3.3. Fault label derived from manual mapping 

The fault label is used to check that the model predictions are accurate and to adjust the model parameters accordingly. The characteristics 

of a fault label for training an algorithm include its quality (the accuracy of the labels assigned to the data), quantity (the size of the dataset, 

which must be large enough to avoid overlearning and ensure correct generalization) and representativeness (the variety of the data, which 

must cover all possible cases that the model could encounter in its actual use). The use of a high-quality fault label, in sufficient quantity 

and representativeness, is essential for training an accurate and efficient neural network. 

As the USGS Quaternary fault mapping is sometimes inaccurate at small scales or of variable precision, we created a new manual mapping 

of faults over the eastern half of the study area using elevation and slope data, and satellite imagery. The remaining half was reserved for 

prediction (Figure 1; Figure 2). The main visual characteristics of the fault object that help to identify it are:  

 A fault often appears as a generally straight line on the image, creating a strong visual contrast with the surrounding areas 

 Active or recent faults can affect the topography: the areas on either side of the fault will have a different elevation and the fault 

zone itself will have a steeper slope. 

 Faults can affect the surrounding vegetation, creating a noticeable variation in vegetation on different parts of the Earth's surface.  

 Geological features can also be associated with the presence of faults in the area, such as areas of weathered rock or fractures 

along hillsides or mountains. 

Using these criteria, we created a fault label dataset containing 1100 faults with a cumulative length of 264 km. These faults, initially in 

shapefile format, are converted to a binary raster, with pixels crossed by a fault taking the value 1. As the expression of a fault on the data 

can be thicker than the resolution of the data used (10 m), a buffer is applied around the fault pixels: all pixels in this buffer take the value 

1. As the effect of this buffer on the quality of the prediction is unknown at this stage, but could help in the learning phase, a buffer value 

of 50 m was used, implying a thickness of the fault signature in the data 100 m. The raster created are used to generate the label images 

in the dataset creation phase. 

4. DEEP LEARNING METHODOLOGY 

4.1. Principles of deep learning and Convolutional Neural Networks (CNN) 

A neuron is an input function 𝑓𝑗  with 𝑥 = (𝑥1, … , 𝑥𝑑), weighted by a vector of weights 𝑤𝑗 = (𝑤{𝑗,1}, … , 𝑤{𝑗,𝑑}), completed by the bias 𝑏𝑗  

and associated with an activation function 𝜑 with 𝑓𝑗(𝑥) = 𝜑(𝑤𝑗 , 𝑥 > +𝑏𝑗) = 𝜑 (𝑎𝑗(𝑥)). There are various activation functions including 

identity, sigmoid, hyperbolic tangent, threshold, Rectified Linear Unit (ReLU). Artificial Neural Networks (ANNs) consist of a connected 

set of neurons, each of which is trained to generate a specific decision boundary and classify simple spaces. The weights of each neuron 

are incrementally adjusted by the network to optimize a predefined cost (or loss) function. The layers within an ANN can be of different 

types and these different layers are connected in a sequential order so that the input of one layer is the output of the previous one (Figure 

4). Traditionally, ANNs have an input layer that receives the input data; a set of hidden layers, which serve as the classifier; and an output 

layer that provides the result of the classification (Hornik et al., 1989). 

CNNs differ from the ordinary ANNs in that different inputs share weights, rather than each input having a single weight (LeCun et al., 

1995, 1989). CNNs extract features in the image matrix using convolutions that help to extract the most descriptive features in an image. 

CNNs are typically composed of (1) convolutional layers, which perform a convolutional product between a filter (kernel) to learn the 

convolutions that best represent the classes in the data; (2) pooling layers which use a filter that scans the input matrix and retains only 

the maximum value, allowing the number of features from the convolutions to be reduced, thereby improving computational performance 

(Nair and Hinton, 2010), controlling overfitting and allowing for translation invariance; (3) ReLU layers, which apply the ReLU activation 

function (Nair and Hinton, 2010) to enhance the non-linear properties of the network. A typical CNN contains many layers with kernels 

that interact hierarchically to extract the relevant feature in an image. The “depth” of a CNN is related to the number of layers in the 

architecture of the CNN.  

4.2. Architecture of the CNN models 

The U-Net architecture (Ronneberger et al., 2015) includes two sub-networks, called the encoder and decoder, with skip connections 

between the encoder and decoder units (Figure 4). The encoder down-samples and coarse-grains the data through “pooling layers”, which 

are typically added after each or a short series of convolutional layers. This pooling operation consists of a sliding window that scans the 

output of the previous layer, looking for the maximum (“max pooling”) value at each position of the scan (Boureau et al., 2010). The 

pooling operations thus reduce the size of the feature maps, allowing the next filters to have a larger field of view of the data, and thus the 
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capacity to identify larger motifs. As the encoder down-samples the data, the searched features can be accurately detected but their 

localization is not accurately recovered. Therefore, a decoder subnetwork is added to up-scale the data and enables the localization of the 

identified features. To facilitate the encoding-decoding process, the model is designed to be symmetric, with the output of each block in 

the encoder being concatenated to the input of its symmetric counterpart in the decoder. Each block in the decoder performs the same 

number of convolution operations as its counterpart in the encoder, but these are followed by an upscaling operation. A final convolution 

layer with a sigmoid activation function produces the output image from the probability for each pixel to belongs to the feature class, a 

Quaternary fault in our study. 

 

Figure 4:Simplified U-net (siUNET) architecture used for fault prediction considering 256 x 256 input image tiles and 256 x 256 

probability image output. Each blue box corresponds to a multi-channel feature map. The number of channels is indicated at the 

top of the box. The x-y size is given at the bottom left of the box. White boxes represent copied feature maps. The arrows indicate 

the different operations (modified from Ronneberger et al., 2015). 

In this study, we used two different CNN models based on a U-net architecture: a simplified version of U-Net model (called siUNET; 

Figure 4) and the FaultSEG model, developed by TLS Geothermics. The siUNET model (Figure 4) was designed to test the effectiveness 

of CNNs for predicting Quaternary faults from elevation and satellite data. With a total of 487297 parameters, it is relatively simple and 

can be easily trained for rapid application. The FaultSEG model was developed later to achieve the best possible performances for the 

same task as siUNET. It is a deeper CNN with more blocks in the encoder and decoder. The blocks themselves contain more convolutional 

layers and a larger number of channels. As a result, the number of parameters to be trained is about 100 times greater than with siUNET, 

and the learning and prediction times are therefore longer. 

5. TRAINING PROCESS 

5.1. Training, validation and test dataset creation process 

Data creation 

The learning, validation and test datasets are created using the following procedure: 

 The multiband image (elevation, slope and satellite) of the study area is divided into tiles of the desired size. Given the resolution 

of the images used (10 m) and the size of the signature of the fault objects (10² - 105 m long and 10 - 10² m wide), an image size 

of 128 x 128 pixels, i.e. 1280 x 1280 m, was chosen. This size makes it possible to show all or part of a fault, or even several 

faults in the same image, while limiting the size of the images. An equivalent split is performed on the label image to obtain the 

label tile corresponding to each multiband data tile. 

 Only tiles whose labels contain at least one fault pixel (value 1) are retained. This filtering step makes it possible to (1) limit the 

imbalance in the training data (very few fault pixels with a value of 1 compared with pixels with a value of 0) and (2) limit the 

possibility of learning images without mapped faults when there should be some due to operator observation bias. At this stage, 

7692 tiles are retained for 50 m buffer. 

 Randomly divide the retained tiles into a training set, a validation set and a test set with 64%, 16% and 20% proportion 

respectively. Therefore, at this stage, the training, validation and test datasets contains 4920, 1232 and 1540 images respectively. 
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Data normalization 

Since each image tile has a different topography, slope and satellite image value, there is a need to normalize the training, validation and 

test data. Indeed, without this normalization step, the training from one image or batch of images is not transferable to different images. 

Therefore, each image is normalized and centered per band using the following equation: 

𝑋′𝑖 =
𝑋𝑖 − µ𝑖
𝜎𝑖

 

Where i is the indices of the band, X’ the normalized image, X the original image, µ the mean and 𝜎 the standard deviation 

This image normalization process involves vertical exaggeration of the relief in relatively flat areas (sedimentary basin center, playa). 

This effect is intended because it helps to identify structures in these flat areas. However, it also means that features other than Quaternary 

faults may be exaggerated. Prediction results in flat areas should therefore be treated with caution. 

 

Figure 5: Data processing to produce efficient training, test and validation datasets from elevation, slope and satellite data, and 

fault labels. 

Data augmentation 

Data augmentation is essential to teach the network the desired invariance and robustness properties, when only few training samples are 

available (Ronneberger et al., 2015). In our study, there is a relatively small volume of fault label available (~ 7700 images) due to the 

time required for the manual fault picking, inducing a small number of training data. It may involve difficulties in training and potentially 

over-fitting, when the model learns so much from a specific dataset that it becomes unable to predict anything else than this dataset. 

Therefore, to prevent this bias and improve the training performances, we artificially augmented the dataset, using the Albumentations 

Python library (Buslaev et al., 2020), by applying pixel-level and spatial-level transformations including: random change of brightness 

and contrast, random change of hue and saturation values, random gamma correction, flip transformations, 90° rotations, transposition, 

grid distortion and elastic transform. 

A specific pipeline of augmentation transformation is applied to the normalized dataset with probability function associated to each 

possible transformation. Then, a dataset containing 20000 images for training, 4000 images for validation and 4000 images for test is 

generated, inducing 72%, 14% and 14% proportion respectively. Note that the degree of overfitting is monitored during training by 

evaluating the model performance on the independent validation data set, which is not used to constrain the model parameters directly. 

5.2. Loss function and metrics for estimating the performances of the model 

The objective of our study and the data used involves a strong class imbalance in the data and in the expected predictions. Indeed, even 

with a buffer around the faults, the pixels classified 1 (fault) are much less numerous than the pixels classified 0 (non-fault): the proportion 

of fault pixels is 6.5%. Consequently, the loss function and the metrics chosen to evaluate model performance must take this behavior into 

account. 

The class imbalance involves the non-fault class will dominate the classic binary cross entropy loss, causing the model to become more 

confident in predicting non-fault class while putting less emphasis on the fault class. Moreover, binary cross entropy loss fails to pay more 
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attention to hard examples, those in which the model repeatedly makes huge errors rather than those which are easily classified. To solve 

these problems, we used Focal Binary Cross Entropy loss (Lin et al., 2018): 

𝐹𝑜𝑐𝑎𝑙𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −∑𝛼 ∙ (1 − 𝑝𝑖)
𝛾 ∙ 𝑙𝑜𝑔⁡(𝑝𝑖)

𝑖=𝑛

𝑖=1

 

Where 𝑝𝑖 is the predicted probability of class 1, α the balancing factor and γ the focusing parameter. 

Focal Binary Cross Entropy loss uses a "focal factor" (1 − 𝑝𝑖)
𝛾 to down-weight easy examples and focus more on hard examples, ensuring 

that predictions on hard examples improve over time rather than becoming overly confident with easy ones. This loss function naturally 

solved the problem of class imbalance because examples from the majority class are usually easy to predict while those from the minority 

class are hard due to a lack of data or examples from the majority class dominating the loss and gradient process. In our study, 𝛼 value is 

0.065 to fit with class imbalance observed in the data and 𝛾 value is arbitrary 2.0. 

Table 6: Summary of metrics used to quantitatively assess the performances of the siUNET and FaultSEG models for geological 

fault detection task. 

METRIC ADVANTAGES EQUATION 
FAIR 

VALUE 

Precision-

Recall AUC 

(PR-AUC) 

 Measure overall performance of the model 

but does not take into account the quality 

of localisation  

 Effective for unbalanced datasets as it does 

not take into account true negatives 

 May be misleading if there are many false 

positives. 

𝑃𝑅𝐴𝑈𝐶 = ∫ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑟)𝑑𝑅𝑒𝑐𝑎𝑙𝑙(𝑟)
1

0

 ≥ 0.50 

Weighted 

Focal IoU 

(Intersection 

over Union) 

 Variant of the widely used IoU 

 Takes into account the quality of the 

localisation  

 Adjusts class imbalance by applying 

weights and giving more weight to smaller 

and more complex objects. 

 More suitable for assessing pixel-level 

accuravy for small objects  

∑ 𝑤𝑐 ⋅ (𝑦𝑡𝑟𝑢𝑒,𝑐 ⋅ 𝑦𝑝𝑟𝑒𝑑,𝑐)𝑐𝑙𝑎𝑠𝑠

∑ 𝑤𝑐 ⋅ (𝑦𝑡𝑟𝑢𝑒,𝑖 + 𝑦𝑝𝑟𝑒𝑑,𝑐 − 𝑦𝑡𝑟𝑢𝑒,𝑐 ⋅ 𝑦𝑝𝑟𝑒𝑑,𝑐)𝑐𝑙𝑎𝑠𝑠

⋅ (1 − 𝐼𝑜𝑈)𝛾 

Where c is the class, 𝑤𝑐 the weight of the class c and 𝛾 the focal 

parameter. In our study, 𝛾=2.0 and 𝑤𝑐 are consistent with class 

imbalance in the data 

≥ 0.50 

 

During training, the performance of the models is estimated in a quantitative manner with metric functions which must consider the class 

imbalance in the datasets (Table 6): Precision-Recall Area under Curve (PR-AUC), and Weighted Focal Intersection over Union (wF-

IoU). These metrics, by measuring the ability of the models to detect faults with a precise location, are essential to optimize the 

hyperparameters of the model and find the best model for a constant architecture. However, the performances of the different architecture 

of model (siUNET and FaultSEG) are also estimated in a qualitative manner, through the visual inspections of the predictions, especially 

in areas that the model has never seen during training. 

6. RESULTS 

 

Figure 7: Metrics measuring the performance of the siUNET and FaultSEG models for the fault detection. Weighted Focal IoU 

are calculated for different values of the threshold defining a prediction as true or false. PR-AUC is a global metric that 

summarises the performance for object detection. 
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The siUNET and FaultSEG models were both trained on the same augmented dataset with the same hyperparameters (Adam optimizer, 

20 epochs and a learning rate of 10-5) and performance results, including loss and metrics, are shown on Figure 7. Note that the Weighted 

Focal IoU is affected by the threshold that defines a prediction as true or false. Therefore, we calculated this metric for different values of 

threshold. For the PR-AUC and the wF-IoU, FaultSEG outperforms the siUNET model for the training, validation and test datasets. The 

values of PR-AUC after 20 epochs, which measured the global performance of the model, are 0.902, 0.610 and 0.595 for training, 

validation and test respectively for FaultSEG while they are 0.574, 0.463 and 0.449 respectively for siUNET. Therefore, based on PR-

AUC, FaultSEG has a fair detection (≥ 0.50), even for validation and test, making it a good candidate for generalization, which is not the 

case for siUNET. For Weighted Focal IoU, a threshold ≤ 0.3 should be considered as good performance for FaultSEG (≥ 0.879, ≥ 0.594 

and ≥ 0.580 for training, validation and test respectively) and ≤ 0.2 for siUNET (0.600, 0.498 and 0.453 for training, validation and test 

respectively). This highlights a better ability of FaultSEG to correctly localize the predicted faults compared to siUNET. 

However, the loss and metrics show a clear deviation between the values for training and the validation datasets after 7 epochs, indicating 

likely overfitting to the training data. This overfitting is also present but to a lesser extent for siUNET after 12 epochs. Note that the 

FaultSEG after 7 epochs outperforms siUNET avec 12 epochs and reach the fair detection value for both metrics. This probable overfitting 

raises the question of the generalization of the models from a quantitative point of view. 

 

Figure 8: LiDAR image of the western Humboldt Range with faults labelled according to Silver et al. (2011); and siUNET and 

FaultSEG Quaternary fault prediction in the same area. The detection is qualitatively very good, with fewer artefacts with 

FaultSEG, but also shows that both siUNET and FaultSEG models detect non faulted objects described by Silver et al. (2011), 

such as the paleo-shoreline or the Rec Area scarp. 

Therefore, we performed predictions with siUNET and FaultSEG on the whole study area (Figure 1) to qualitatively evaluate their 

prediction performance, and especially the possibility of generalization of both models in the western part of the area (Figure 1). Large-

scale results cannot be presented legibly in this publication. However, they show very good detection quality, even in the area dedicated 

to prediction, so never seen during training, and some example areas are shown in Figure 8 and Figure 9. Although the metrics are below 

the minimum required for fair detection, siUNET produces interesting qualitative results. However, it shows many small detection 

artefacts, that are likely to influence the metric values. The qualitative performance of FaultSEG is consistent with the good metric values 

and confirms that its predictions are better than those of siUNET. 

In the Rye Patch area, where a LIDAR fault mapping is available (Silver et al., 2011), the two models siUNET and FaultSEG detect most 

of the Quaternary faults mapped in the publication, at least as accurately as the previous USGS mapping. Both models are therefore 

qualitatively very good. Note that the faults to the east of the Rye Patch power plant (Figure 8) are slightly detected by FaultSEG but not 

by siUNET, confirming the local and qualitative superiority of FaultSEG over. In addition, the siUNET prediction shows more artefact 

predictions than FaultSEG, which could be pure artefacts or the detection of other surface objects such as the paleo-shoreline, beach ridge 

(Silver et al., 2011) or canyon. 

Another example area around the Leach Hot Springs (Figure 9) confirms the good quality of the detection, as most of the USGS Quaternary 

faults are detected. Note that the fault trace is derived from the detection image by a proprietary algorithm. It is sometimes even more 
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accurate than the USGS mapping as some discrepancies > 150 m are observed with a clear offset between the USGS fault line and the 

topographic break visible on the slope data (Figure 9, area B). New faults are also detected (Figure 9, area A), mainly by FaultSEG and 

later confirmed by experts looking at the LIDAR data. This shows that the Quaternary fault detection with siUNET and FaultSEG can 

outperform the USGS mapping. However, as in the western Humboldt Range (Figure 8), the Leach Hot Springs area highlights the ability 

of FaultSEG, but especially siUNET to detect other object than Quaternary faults. In this case, the detection of a canyon boundary (Figure 

9, area B) and stream boundary (Figure 9, area A) raises questions as they are aligned with USGS Quaternary faults. 

 

Figure 9: USGS Quaternary fault mapping and siUNET and FaultSEG Quaternary fault detection on the Leach Hot Springs area 

with zoom on two specific areas: (A) new faults are detected, more accurately by FaultSEG, and confirmed by an expert on LIDAR 

data; (B) increase in accuracy compared to USGS mapping and possible false detection of a canyon boundary. FaultSEG and 

siUNET fault traces are extracted from the detection image using a dedicated algorithm. 
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7. DISCUSSION 

The quantitative and qualitative analysis of the predictive performance of siUNET and FaultSEG highlights the difficulties in choosing 

the right metrics to estimate the performance for such an object detection task: (1) a very high imbalance in the dataset, (2) the complexity 

of the fault signature on the data used and its similarity to other geomorphological objects, and (3) the fault labels used for training are 

inherently uncertain as manual fault maps are never exhaustive. With the chosen metrics, only FaultSEG is considered good, while the 

qualitative analysis shows satisfactory or even good results, even for siUNET. 

The high imbalance in the data can be managed manually in the training process and in the metrics by using weights and focusing 

parameters. However, this adds hyperparameters that require an optimisation phase, as they cannot be determined solely from data 

statistics, or the nature of the object being searched for. The complex signature of faults is probably the most important issue affecting 

training and analysis of predictive performance. What is required to confirm the presence of a fault? In the field, without trenches, we 

generally see clear topographic breaks where it is impossible to measure microstructures that confirm a fault, or microstructural 

measurements in areas where the LIDAR data do not necessarily indicate a fault. Sites where both are observed at the same time do exist 

but are actually quite rare compared to the density of faults in the western US. This highlights the need to inform the model that any part 

of the study area may contain some faults, even if they are not present in the fault label. This could be done by including an adversarial 

loss term (Goodfellow et al., 2015) or by introducing noise in the true label (Mnih and Hinton, 2012), which will be the subject of further 

work. 

Furthermore, this complexity of fault signature implies that siUNET and FaultSEG, like the fault label mapping expert, may be biased by 

other objects with similar morphological signatures (paleo-shoreline, canyon, stream). At present, no particular attention has been given 

to helping the models to distinguish faults from other geomorphological objects. It has been decided to take the risk of predicting too 

many faults, even if this means deleting them manually afterwards with an expert analysis, rather than missing or incorrectly mapping 

certain faults. A dedicated learning design with, for example, a paleo-shoreline class and associated labels, could be considered. However, 

we know that in some cases, faults can be co-located with a paleo-shoreline (geological survey, TLS Geothermics) or with a canyon 

boundary (Figure 9, area B). An approach to differentiate between them may therefore miss some of these co-located structures. We 

believe that iterative learning (transfer learning or not), using faults predicted by the model and validated by an expert as fault label, can 

improve the qualitative and quantitative detection performance as well as discrimination between faults and other geomorphological 

objects. The more fault examples the model sees, the more likely it is to recognise the signature of a fault in the data. This iterative 

approach should also be useful in mapping the Quaternary faults outside of central Nevada so in different geological and tectonic contexts 

such as the Walker Lane (strike-slip motion) and the Rio Grande (narrow rift). This work is ongoing, along with optimization of the 

hyperparameters to improve learning and hence prediction accuracy. 

8. CONCLUSION 

The improvement of fault mapping in Western USA is a key for assessing the geothermal favorability at regional scale, locate the best 

areas for exploration and build more robust and precise structural models at prospect scale. To complete, precise and homogenize the 

existing USGS Quaternary Faults database, TLS Geothermics has developed deep learning models, siUNET and FaultSEG, using 

Convolutionnal Neural Networks to automatically detect faults on remote sensing and satellite data.  

After training on a study area in central northern Nevada using fault labels manually mapped by an expert, the two models, but especially 

FaultSEG, show good qualitative prediction compared to existing Quaternary fault mapping. Quantitatively, the metrics measuring the 

performance of the models are good for FaultSEG, achieving a fair detection threshold and outperforming the siUNET model. However, 

some overfitting to the training data is observed for both models, while the prediction over a large test area is qualitatively good. This, 

together with the tendency of the models to detect morphological objects close to the faults (coastline, canyon, stream), indicates the need 

to optimize the learning strategy or to significantly increase the number of training data to cover a greater variability of possible fault 

signatures. 

The results of fault mapping using deep learning presented in this study are very encouraging. In the study area, the mapping obtained is 

at least as complete as existing mapping and often more accurate. Although the current predictions are good, the siUNET and FaultSEG 

models developed by TLS Geothermics are being optimized to determine the most favorable hyperparameters, which will improve 

performance and predictions. The proposed iterative learning strategy is also being implemented and should rapidly lead to improved 

predictions and better generalization of the models. We are in the process of producing a new map of Quaternary faults across the western 

USA, where LIDAR data allow, which will aid exploration of fault-controlled geothermal systems and understanding of tectonic 

processes. 
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